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Abstract
To model electron transport through atomic/molecular junctions, we propose an efficient
method using nonequilibrium Green’s function theory combined with density functional theory.
We have applied our method to atomic gold wire with gold electrodes and calculated elastic and
inelastic conductance. We find that quantum confinement of the electrodes is an important issue
for electron transport because of waveguide effects. The results show the important role of the
phase factors between the modeled electrodes and the contact region.

1. Introduction

There has been progress in the application of conduction by
atomic wires or molecular junctions to new devices [1–4]
and single-molecule spectroscopic techniques, such as inelastic
electron tunneling spectroscopy (IETS) [5–13] Generally, it is
difficult to manipulate or specify the atomic structure for the
junction (contact region) experimentally, and therefore several
groups have performed ab initio calculations of transport
for realistic electrode–molecule–electrode systems using
nonequilibrium Green’s function theory (NEGF) combined
with density functional theory (DFT) [14–18] Theoretical
treatment of the electrodes often depends on an adopted model
of the contact region and an ab initio method, such as cluster
approximation or the periodic slab model. The latter is more
suitable for modeling systems which contain sufficiently large
(infinite to the direction parallel to the surface) electrodes.
However, the computational cost of the self-consistent-field
(SCF) in NEGF (NEGF-SCF) is usually large, and it is
sometimes difficult to get convergence of the SCF.

Recently we proposed a new efficient algorithm for
NEGF-SCF based on the molecular orbital (MO) expansion
and named ‘efficient MO approach’ [16] Our scheme consists
of three main features: (i) perturbation expansion of the
Green’s function in the MO basis, (ii) a truncated MO space
scheme to estimate the density matrix, and (iii) introduction
of the embedding potential to reproduce the contribution
caused by the long-range bulk potential. In the present

paper we develop the method by improving two points. The
first is by introducing the correction term of the density
matrix combined with a slight modification of the embedding
potential in order to make the procedures of NEGF-SCF
and the constructed embedding potential consistent. As the
second improvement, we propose an accurate O(N) method
to estimate self-energy matrices for semi-infinite electrodes.
These two improvements allow numerically stable NEGF-
SCF calculations and therefore lead to acceleration of the
convergence as well as high computational efficiency.

As test calculations, we apply our method to inelastic
transport in gold atomic wire with gold electrodes. To
estimate the contribution of electron–phonon interactions to
the conductance, we incorporate our new method in the
lowest order expansion (LOE) framework, proposed by several
groups [19–21]. In the atomic/molecular junctions, quantum
confinement plays important role in the transport. Ke et al
showed that the behavior of transport through the whole system
depends not only on contact but also on the electrode itself as a
result of quantum confinement [22]. By performing the above
test calculations, we report that the quantum confinement and
waveguide effects contribute to the change of conductance
caused by electron–phonon scattering as well as ballistic
transmission coefficients.

The organization of the paper is as follows. In section 2,
we provide the theoretical framework and computational
scheme. The theoretical background of the NEGF and LOE
formalism is reviewed in section 2.1, and a brief review
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of our efficient MO approach is given in section 2.2. In
section 2.3, the two improvements, the correction factor of
the density matrix and the O(N) algorithm for calculating
a self-energy matrix, are shown. The test calculations and
analysis of waveguide effects are described in section 3, and
our conclusion is summarized in section 4.

2. Theory

2.1. NEGF and LOE formalism for inelastic transport

First we briefly describe the LOE formalism based on the
NEGF framework. The details are given in [21, 23]. First we
introduce the Hamiltonian of electrons coupled to vibrational
modes as follows:

H = H e + H ph + H eph

H e =
∑

m,m′
Hμμ′d†

μdμ′

H ph =
∑

α

�αb†
αbα

H eph =
∑

α,m,m′
Mα

μμ′ d†
μdμ′(b†

α + bα),

(1)

where d†
μ is a creation operator for an electron, and Hμμ′ is the

matrix element of the mean-field Hamiltonian in the atomic
orbital (AO) basis. The operator b†

α is the phonon creation
operator relating to the vibrational mode α, which has the
normal mode coordinate Qα and frequency �α . The matrix
element Mα

μμ′ is the electron–phonon (e–ph) coupling. We
adopt the atomic unit, i.e. e = h̄ = 1.

To perform practical ab initio calculations, the system
in question should be projected to the finite region, denoted
as C , and further divided into three parts L, c, and R,
which relate to the left lead part, the central region, and the
right lead part, respectively. Since the Hamiltonian includes
(semi-infinite) electrodes, these semi-infinite electrode parts
connected to L/R regions are renormalized to the L and R
region as the lead self-energy terms such as �L and �R: thus
the Green’s functions are expanded only in the C region. The
e–ph interactions are incorporated into the Green’s functions
by using e–ph (lesser and retarded) self-energy terms. In
the present formalism, the e–ph interactions are assumed to
be restricted in the C region: thus the coupling Mα

μμ′ is
defined only in the C region. Furthermore the normal mode
is obtained by means of a frozen-phonon [24], where displaced
atoms are atoms in the c region (or its subpart) relating to the
bridge molecule (or wire) denoted as a ‘vibrational box’ [25].
When the e–ph coupling is weak, the e–ph self-energies for an
electron interacting with the α mode can be expanded in term
of the Hartree–Fock diagrams as follows: [23, 26, 27]

Σ<
α:eph(E) = i

2π

∫
dωD<

α (ω)MαG<(E − ω)Mα

Σα:eph(E) = i

2π

∫
dω

{
D<

α (ω)
[
MαG(E − ω)Mα

]

+ Dα(ω)
[
MαG>(E − ω)Mα

]

− Dα(0)MαTr
[
MαG<(ω)Mα

]}

(2)

where the symbols ‘<’ and ‘>’ represent the lesser and greater
functions as is Green’s functions for electrons G(E) and
for phonons Dα , and we adopt the matrix representation for
convenience. When focused phonon modes are plural but
couplings between them can be omitted, the e–ph self-energies
are simply the sum of self-energies for each mode. We denote
the total e–ph self-energies as �<

eph and �eph.
The Green’s functions are obtained by the Dyson equation

(for the retarded Green’s function) and the Keldysh–Kadanoff–
Baym (KKB) equation (for the lesser Green’s function),
formally

G<(E) = G(E)(Σ<
L + Σ<

R + Σ<
eph)G

†

G(E) = G̃(E) + G̃(E)Σeph(E)G(E)
(3)

where G̃(E) is the solution of the Dyson equation without e–
ph interactions, i.e. G̃(E) = (E − H −�L −�R)−1. The total
current (including the spin factor) for the applied bias Vb can
be expressed as follows:

I (Vb) = 1

π

∫
dETr

[
Σ<

L (E)G>(E) − Σ>
L G<(E)

]
. (4)

Since e–ph interactions contribute to the nonequilibrium states
of phonons, similar equations can be applied to the phonon
Green’s functions. There are several forms for evaluating e–
ph self-energies within Hartree–Fock diagrams. In the present
study, we adopt the LOE approximation [19–21]. The LOE is
basically the second-order perturbation expansion with respect
to the e–ph couplings. However, it contains the term of
nonequilibrium phonon distribution function, which is defined
by the lesser phonon Green’s function. Therefore the final
form includes some terms of higher than second order partially
to represent nonequilibrium vibrational heating. As a result
the LOE can give qualitatively correct properties of the IETS
signal although it is convenient to analyze numerical results in
the sense of the perturbation theory [26].

In the LOE, the total current can be represented as the sum
of three terms as follows:

I = I el
0 + δ I el + I inel. (5)

The elastic part consists of the ballistic term I el
0 and the

remaining term δ I el, which relates to the complicated electron–
phonon scatterings such as the background scatterings. The
term I inel is inelastic current due to inelastic scatterings. The
terms I el

0 , δ I el, and I inel are expressed in terms of G̃(E),
i.e. the result of NEGF without e–ph interactions. The rigorous
expressions for the LOE are derived by Viljas et al, and each
currents I el

0 , δ I el, I inel can be given by equations (E1), (E2),
and (E3), respectively, in [21]. In the present calculations,
we adopt their expression although we omitted the third
term in the above (E3). The currents δ I el and I inel contain
the voltage-dependent nonequilibrium phonon distribution
function, Nα(ω, Vb, T :η), where ω, T , and η are (phonon)
energy, bath temperature, and the broadening parameter for
the phonon Green’s function. We adopt the conventional
expression for Nα , which is also given in equations (14)–(16)
in [21], to calculate the above currents.
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2.2. Efficient MO approach based on truncated MO space

To perform practical ab initio calculation, we employ the
DFT framework to construct the Hamiltonian by means of the
Kohn–Sham (KS) Hamiltonian. For later use, we give the
explicit matrix representation for the Green’s function G̃(E)

as follows:

G̃CC

=
⎛

⎝
ESLL − HLL − ΣL(E) ESLc − HLc 0

ES†
Lc − H†

Lc EScc − Hcc EScR − HcR

0 ES†
cR − H†

cR ESRR − HRR − ΣR(E)

⎞

⎠
−1

(6)

in which the direct couplings between the L and R regions are
0. This will be valid as long as the c region is sufficiently
large because we employ the localized AO basis set. The
matrix S is the overlap matrix between AOs. In our efficient
MO approach, the NEGF-SCF calculation is performed by the
MO basis set, which are eigenstates of the matrix HCC and
labeled by indices I , J etc. In the MO basis, the perturbation
expansion of the Green’s function (PT-GF), which is denoted
as G̃PT(E) and expressed as the diagonal matrix, is a good
first approximation. Following [16], the matrix form of G̃PT

is represented as follows:

G̃PT
CC(E) = diag

[{
E−ε0

I −
i

2

(
ΓL,II(ε

0
I ) + ΓR,II(ε

0
I )

)}−1
]

(7)
where ε0

I is the MO energy and 
L/R = −2 Im ΣL/R. If one
prefers the wide-band-limit approximation, one can replace

L/R,II(ε

0
I ) to 
L/R,II(εF), where εF is the Fermi energy. From

the KKB equation, the PT-GF for the lesser function can also
be obtained as the diagonal matrix, G̃PT<

CC .
Since the density matrix is obtained by the energy integral

of the lesser Green’s function, the density matrix in the MO
basis is also diagonal, this is an electron occupation number
for MO I , which is denoted as dI : i.e.

diag [dI ] = −i

2π

∫
dEG̃PT<

CC (E). (8)

Numerical evaluation of dI is much easier than calculating
the density matrix in the AO basis, and it reduces the
computational cost drastically. After each NEGF-SCF cycle,
one can transform the density matrix from the MO to the AO
basis representation to update the Hamiltonian.

To make the NEGF-SCF step even more efficient we
proposed the ‘truncated MO space’ idea, and applied it to
the present calculations. The details of the procedure and
justification can also be found in [16], as well as the details
of the scheme. Here we only briefly follow the outline of
the concept. If the MO energy is much lower than the Fermi
level, the electron occupation number will always be 1 (or 2 by
including the spin factor). On the other hand, the occupation
will be always zero if the MO energy is much higher than the
Fermi level. Therefore only dI in the ‘active space’ should be
determined by the NEGF-SCF. Therefore the active space is a
small part of the whole MO space. This is the central issue
of the truncated MO space concept. The active space can be

defined by the MO energies in the zero-bias limit and should be
large enough to cover the energy region relating to the focused
maximum/minimum bias. Usually the applied bias is within a
few volts; thus the active space is smaller than about 10% of
the whole MO space. By combining the truncated MO scheme
with the PT-GF approximation in the above equations (7)
and (8), one can further reduce the computational cost of
the numerical integral calculations because the estimation of
equation (8) requires only the active MOs, otherwise it is zero
or one. Here we note that the use of PT-GFs is only for
the NEGF-SCF step, and calculations of properties should be
carried out using the full Green’s function matrix after the SCF
is converged [16].

2.3. Correction of density matrix and O(N) method to
calculate a self-energy matrix

In this subsection we give two improvements of our algorithm,
the correction factor for the density matrix and the O(N)

method for calculations of a lead self-energy matrix. The
first includes a minor modification relating to the embedding
potential method, which was one of schemes in our previous
efficient MO approach. In order to introduce the embedding
potential we need to define the W region, which should be
sufficiently large for the C region to reproduce the contribution
of the long-range potential on the C region, which is created
by the standard KS-DFT calculation for the W region with
the slab model. The need for an embedding potential and its
justification are also given in [16] together with the detailed
procedures. Therefore we describe the minimum needed to
explain the correction factor.

To define the correction factor, we rewrite a matrix
representation of the embedding potential in [16] as follows:

Vemb
CC = HCC[W ] − (TCC + VH

CC{DCC[W ]} + VXC
CC{DCC[W ]})

(9)
where HCC[W ] is the ‘clipped’ matrix form the KS-SCF
Hamiltonian for the W region (or with replacement of HLL and
HRR parts relating to bulk Hamiltonian matrices.). The notation
VH/XC

CC {DCC} represents that the Hartree/XC potential matrices
are calculated by using the density matrix DCC. The matrix
DCC[W ] is the clipped matrix from the KS-SCF density matrix
for the W region (or with replacement, as is the Hamiltonian).
To make the resulting density matrices from the KS-SCF for
the W region and from the NEGF-SCF by equation (8) (then
transformed to AO basis) consistent with the zero-bias limit
(i.e. Vb = 0), we can introduce the correction factor �DCC as
follows:

�DCC = DCC[W ] + i

π

∫
dEG̃<

CC(E)|Vb=0 (10)

where the second term on the right-hand side can be
approximated by the use of PT-GFs for practical calculations,
and we include a spin factor of 2. To update the Hamiltonian
in the NEGF-SCF step for non-zero bias, the Hartree and XC
potential terms are estimated by the corrected density matrix:

DCC = −i

π

∫
dEG̃<

CC(E) + �DCC. (11)

3
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The term �DCC enforces the consistency that DCC[W ]
should agree with the resulting density matrix from NEGF-
SCF in the zero-bias limit, which is the assumption made
in order to introduce the embedding potential [16]. Usually
�DCC should be close to the zero matrix. However, there are a
few cases in which the integral

∫
dEG̃<

CC(E) is numerically
unstable. For an instance, if the system is a completely
one-dimensional chain system, van Hove singularity leads to
an unphysical value for some energy grid points [28]. As
another example, when metal–insulator gap-states (MIGS) or
surface state orbitals exist close to the Fermi level, self-energy
matrix elements are almost equal to 0, leading to numerical
instability. The term �DCC eliminates such unphysical
instability, which accidentally occurs in the SCF cycle, and
gives faster convergence. Further details of the analysis and
relations between the embedding potential and the correction
factor of the density matrix will be given in elsewhere [29].

Next we incorporate the O(N) scheme to evaluate self-
energy matrices of electrodes combined with the tight-binding-
layer (TBL) method by Sanvito et al [17, 30]. The basic
strategy of the O(N) scheme was proposed by Damle et al [31]
and we extend it. We describe the method when the electrodes
have a Ncell × Ncell structure with 
 point approximation as
an example. Instead of calculating the self-energies of the
Ncell × Ncell structure directly, one can use a Fourier expansion
of the self-energies of the 1 × 1 structure, �0(�k‖), as follows:

�μ′ν′ =
∑

�k‖

�0
μν(

�k‖)e−i�k‖( �R′
μ− �R′

ν ) (12)

where μ′ is the set of AOs of atoms in the Ncell × Ncell cell, but
μ is in the unit 1×1 cell. The �k‖ vector is a wavevector parallel
to the surface, and sufficient numbers of �k‖ should be sampled
if the cell for � consists of a number of cells for �0. Because
equation (12) allows one to calculate two-dimensionally wide
electrodes using only the self-energy matrices of the smaller
unit cell, it provides the O(N) algorithm.

However, simple use of equation (12) gives unphysical
oscillation of physical properties such as transmission
coefficients due to unphysical waveguide effects, and a careful
treatment of the phase factors for one-electron wavefunctions
is required to avoid unreasonable interference by summing all
�k‖. To determine a suitable relation between phase factors
and interference explicitly, we introduce the ‘phase matching
condition’ to connect the contact and electrodes as follows:

�k‖ · (Ncell�t) = 2nπ (13)

where �t is a translational vector of the unit cell of the
electrodes, and n is an integer. Recall that the two-dimensional
periodic boundary condition for the Ncell × Ncell cell is
incorporated within the 
 point approximation in the present
scheme.

Finally we briefly comment on the problem of the 
 point
approximation caused by the van Hove singularity, which was
recently pointed out by Thygesen and Jacobsen [28]. We
implemented our scheme described in this section with the

 point approximation. However, even if the size of the C
region (with the periodic boundary condition) is large enough

to apply the KS-DFT calculation with one k-sampling point,
the transmission coefficient and density of states sometimes
provide a sharp cusp as a function of energy in the 
 point
approximation. One k-sampling with the use of a non-
 point
is useful for eliminating such a cusp, although the 
 point
approximation can remove cusps by increasing the cell size
sufficiently. In the present system, the C region is not as small
as described in the next section, and there is no unphysical
behavior caused by the van Hove singularity in the focused
energy region. Therefore we adopt the 
 point approximation
for the following test calculations. If one needs non-
 point
sampling, our efficient MO approach described in section 2.2
can be extended straightforwardly. Also if one carries out
the same procedure with the above O(N) method, but makes
supercells which contains more than Ncell × Ncell cells, one can
take the non-
 sampling point for the self-energy matrix of a
Ncell × Ncell structure system using the constructed supercell as
an extended scheme.

3. Application and results

3.1. Computational model

In the present study, we apply our method to a system of atomic
gold wires [32–35]. The C region consists of a chain part of
six Au atoms, a 2 × 2 top layer and three additional 3 × 3
layers of (100) cross section, which connect to the semi-infinite
electrodes (see figure 1(a)). The electrodes are incorporated
by the self-energy matrices constructed by the surface Green’s
functions of the 3 × 3 (100) structure.

The geometry of the (100) layers is fixed with a lattice
constant of 4.08 Å, and the distance between each second layer
is kept at 21.90 Å. Only the chain and top layers of each side
(a total of 14 atoms) are relaxed, and the vibrational modes
are calculated in this vibrational box. Here, we note that we
take a much larger region (W ) than the C region to determine
the first derivatives of the Hamiltonian and overlap matrices
and the Hessian, although only the parts relating to the C
region are explicitly used by clipping the CC block from the
whole matrix spanned in the W region like the construction
of embedding potential shown in section 2.3. We took the W
region as the C region plus the outer three layers. We focus on
only the highest alternating bond length (ABL) mode, which is
denoted by α and has the highest frequency �α . Although we
omitted explicit couplings between different phonon modes,
the temperature is fixed with 15.0 K, and broadening parameter
for the phonon Green’s function is set to 20.0 meV.

Part of the DFT calculation was performed by the SIESTA
program package [36]. and PBE functions were adopted as the
XC functional [37]. The basis set employed is the AO type of
the polarized single zeta (SZP) level. The above XC functional
and basis functions were also employed for the NEGF–SCF
calculation.

3.2. Model (I)

Model (I) is the whole 2D periodic system and represents
the physical situation given in figure 1(b). The atoms in the
vibrational box hardly changed position after the geometrical

4
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(a)

(b)

(c)

Figure 1. The atomic structure of the gold wire in the Au(100)
system. (a) The unit cell of the C region treated with/without the
periodic boundary condition in each model, as well as the electrodes.
(b), (c) Schematic figures of physical systems corresponding to the
adopted periodic (or non-periodic) condition for the C region and the
semi-infinite electrodes. Parts (b) and (c) relate to models (I) and (II),
respectively, in the text.

(This figure is in colour only in the electronic version)

optimization, i.e. the chain part is linear, and the structure of
the top layers is almost same with a (100) section. Using
this optimized geometry, we found that the ABL mode �α is
128.3 cm−1.

The calculated (ballistic) transmission coefficient, T0(E),
was almost constant in the energy range [−0.2, 0.2 eV] and

(a)

(b)

Figure 2. The transmission coefficient T0(E) and the changes of
conductance by electron–phonon scattering in model (I). T0(E) in
the zero-bias limit is plotted as a function of electron energy in (a),
where the Fermi level is set to zero. The change of conductance is
given as a function of the voltage in (b). The total change δG is
shown by the solid line, and elastic (δGel) and inelastic (δG inel) terms
are given by the dashed and dotted lines, respectively.

has a value of 1.0 due to conduction of the 6s electron of Au
at low bias voltage as shown in figure 2(a), where we set the
Fermi level to 0. In the present case, we focus on only low
applied voltage (typically lower than 25 mV), and the voltage
dependence of T0(E) is quite small. Therefore we only show
T0(E) for the zero-bias case for the all models and illustrate
this in the figures.

To get a converged result for the size of the active space,
we tried several sets of active MO spaces. We found that the
active space, whose MO energies are in [−0.6, 0.6 eV] in the
zero-bias limit, is sufficient if the applied bias is lower than
0.1 V. The total number of active MOs is only 16 MOs.

The change of conductance caused by electron–phonon
scattering, δG, can be defined by the sum of δGel and δG inel,
where each term is defined by d(δ I el)

dV and dI inel

dV , respectively.
The resulting terms, δG etc, are illustrated as a function of
V in figure 2(b). The elastic term dominates conductance
drop, and the decrease is close to linear when the applied bias

5
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is larger than �α . The magnitude of δG is about 0.15% of
G0 at eV ≈ h̄�α, where G0 is the conductance unit e2/π h̄.
The experimental results are within the order of a 0.5–1.5%
drop of the conductance [32, 33, 37]: thus our result is a little
smaller than the experimental one. However, the shape of δG
agrees well with experimental results as a function of the bias
voltage. Since the magnitude of the change of conductance is
very sensitive to the length of the wire, the distance between
the electrodes, and couplings with thermal bath phonons [38],
the above agreement will be sufficient to prove the validity
of our model. Furthermore, previous theoretical calculations
using similar parameters show the same order of magnitude as
our result [21, 35]. Comparing with δGel, the magnitude of
δG inel, which is always a positive value, is close to only 10%
of δGel, and this detailed structure of δG is the same as in
theoretical studies [20, 21, 23, 34]. Therefore we conclude that
our calculation scheme is also valid.

3.3. Model (II)

In model (II), the lead self-energies are the same as for model
(I), but the C region is 1-D non-periodic; thus, the system has
a sufficiently long finite cross section on the electrodes. The
corresponding physical system is given in figure 1(c). We
calculated �α by the same procedure as with model (I). The
frequency is very close to that of the 2D contact as well as the
eigenmode vector, and the difference in the two frequencies is
within only a few cm−1. Furthermore, the other eigenmodes
in the vibrational box also have similar values to the modes
calculated in model (I).

The transmission coefficient T0(E) for model (II) is
presented in figure 3(a). One can find the oscillation structure
of T0(E) in the presented energy window: the minimum value
is about 0.7. The position of the Fermi level gives a value close
to the bottom of T0(E). The calculated δG is also plotted as a
function of bias voltage in figure 3(b). This is a clear example
of waveguide effects due to quantum confinement. In the study
by Ke et al waveguide effects for tunneling conduction were
shown because the bridge part in their study was the benzene–
dithiol molecule [22]. The present case shows waveguide
effects on open-channel conduction.

The value of δG is about 0.05% of G0 when the voltage
is close to �α; thus, the electron–phonon scatterings affect
the conductance drop with a somewhat smaller magnitude
for model (II) than for model (I). However, each term
resulting from elastic and inelastic scatterings is quite different.
Compared with model (I), the magnitude of δGel becomes
small, and δG inel is enhanced. The two values take the same
order. Because the inelastic term is directly related to the
vibrational heating, the waveguide effects enhance the local
heating [35].

4. Conclusions

We have proposed a new efficient algorithm to perform
the NEGF-DFT procedure and applied it to a gold atomic
wire. The improvement of our previous algorithm provides
an acceleration of convergence of NEGF-SCF and numerical

(a)

(b)

Figure 3. The transmission coefficient T0(E) and the changes of
conductance by electron–phonon scattering in model (II). T0(E) in
the zero-bias limit is plotted as a function of electron energy in (a),
and the change of conductance is give as a function of the voltage in
(b). The notation is the same as in figure 2.

stability. The scheme has been implemented with inelastic
transport processes within the lowest-order perturbation
expansion for electron–phonon couplings. The O(N) method
to calculate self-energy matrices in the tight-binding-layer
scheme is also modified to eliminate unphysical waveguide
effects, and satisfactory results were obtained.

Our focus of the application to the case of a gold atomic
wire is quantum confinement by finite cross section, and
employs two model systems, (I) and (II). The waveguide
effects for a small cross section lead to fluctuation in T0(E)

and a large change of the role of conductance by electron–
phonon scattering, although the differences in coupling
coefficients are relatively small between these models. One
of the interesting results in the present study is that the
waveguide effects resulting from quantum confinement in
physically reasonable situations contribute to δG inel more
strongly than to δGel. Because the term δGel corresponds to
inelastic electron–phonon scattering, which directly relates to
vibrational heating, careful theoretical consideration will be
required for both structures of the tip/contact and lead parts
to analyze vibrational excitations by IETS techniques.
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